Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 116(5): 1201-1217, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37597203

RESUMO

Woodland strawberry (Fragaria vesca subsp. vesca) is a wild relative of cultivated strawberry (F. × ananassa) producing small and typically conical fruits with an intense flavor and aroma. The wild strawberry species, F. vesca, is a rich resource of genetic and metabolic variability, but its diversity remains largely unexplored and unexploited. In this study, we aim for an in-depth characterization of the fruit complex volatilome by GC-MS as well as the fruit size and shape using a European germplasm collection that represents the continental diversity of the species. We report characteristic volatilome footprints and fruit phenotypes of specific geographical areas. Thus, this study uncovers phenotypic variation linked to geographical distribution that will be valuable for further genetic studies to identify candidate genes or develop markers linked to volatile compounds or fruit shape and size traits.


Assuntos
Fragaria , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Fenótipo , Cromatografia Gasosa-Espectrometria de Massas
2.
Plant Cell ; 35(11): 4020-4045, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37506031

RESUMO

The NAC transcription factor ripening inducing factor (RIF) was previously reported to be necessary for the ripening of octoploid strawberry (Fragaria × ananassa) fruit, but the mechanistic basis of RIF-mediated transcriptional regulation and how RIF activity is modulated remains elusive. Here, we show that FvRIF in diploid strawberry, Fragaria vesca, is a key regulator in the control of fruit ripening and that knockout mutations of FvRIF result in a complete block of fruit ripening. DNA affinity purification sequencing coupled with transcriptome deep sequencing suggests that 2,080 genes are direct targets of FvRIF-mediated regulation, including those related to various aspects of fruit ripening. We provide evidence that FvRIF modulates anthocyanin biosynthesis and fruit softening by directly regulating the related core genes. Moreover, we demonstrate that FvRIF interacts with and serves as a substrate of MAP kinase 6 (FvMAPK6), which regulates the transcriptional activation function of FvRIF by phosphorylating FvRIF at Thr-310. Our findings uncover the FvRIF-mediated transcriptional regulatory network in controlling strawberry fruit ripening and highlight the physiological significance of phosphorylation modification on FvRIF activity in ripening.


Assuntos
Fragaria , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
J Exp Bot ; 74(20): 6237-6253, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37449770

RESUMO

Fruit ripening involves numerous physiological, structural, and metabolic changes that result in the formation of edible fruits. This process is controlled at different molecular levels, with essential roles for phytohormones, transcription factors, and epigenetic modifications. Fleshy fruits are classified as either climacteric or non-climacteric species. Climacteric fruits are characterized by a burst in respiration and ethylene production at the onset of ripening, while regulation of non-climacteric fruit ripening has been commonly attributed to abscisic acid (ABA). However, there is controversy as to whether mechanisms regulating fruit ripening are shared between non-climacteric species, and to what extent other hormones contribute alongside ABA. In this review, we summarize classic and recent studies on the accumulation profile and role of ABA and other important hormones in the regulation of non-climacteric fruit development and ripening, as well as their crosstalk, paying special attention to the two main non-climacteric plant models, strawberry and grape. We highlight both the common and different roles of these regulators in these two crops, and discuss the importance of the transcriptional and environmental regulation of fruit ripening, as well as the need to optimize genetic transformation methodologies to facilitate gene functional analyses.


Assuntos
Climatério , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Frutas/metabolismo , Ácido Abscísico/metabolismo , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Plant Cell Environ ; 46(9): 2851-2866, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37403836

RESUMO

Zostera marina is a seagrass, a group of angiosperms that evolved from land to live submerged in seawater, an environment of high salinity, alkaline pH and usually very low NO3 - . In 2000, we reported the first physiological evidence for the Na+ -dependent high-affinity NO3 - uptake in this plant. Now, to determine the molecular identity of this process, we searched for NO3 - transporters common to other vascular plants encoded in Z. marina's genome. We cloned two candidates, ZosmaNPF6.3 and ZosmaNRT2 with its partner protein ZosmaNAR2. ZosmaNAR2 expression levels increase up to 4.5-fold in Z. marina leaves under NO3 - -deficiency, while ZosmaNRT2 and ZosmaNPF6.3 expressions were low and unaffected by NO3 - . NO3 - transport capacity, kinetic properties and H+ or Na+ -dependence were examined by heterologous expression in the Hansenula polymorpha high-affinity NO3 - transporter gene disrupted strain (∆ynt1). ZosmaNPF6.3 functions as a H+ -dependent NO3 - transporter, without functionality at alkaline pH and apparent dual kinetics (KM = 11.1 µM at NO3 - concentrations below 50 µM). ZosmaNRT2 transports NO3 - in a H+ -independent but Na+ -dependent manner (KM = 1 mM Na+ ), with low NO3 - affinity (KM = 30 µM). When ZosmaNRT2 and ZosmaNAR2 are co-expressed, a Na+ -dependent high-affinity NO3 - transport occurs (KM = 5.7 µM NO3 - ), mimicking the in vivo value. These results are discussed in the physiological context, providing evidence that ZosmaNRT2 is a Na+ -dependent high-affinity NO3 - transporter, the first of its kind to be functionally characterised in a vascular plant, that requires ZosmaNAR2 to achieve the necessary high-affinity for nitrate uptake from seawater.


Assuntos
Zosteraceae , Zosteraceae/genética , Nitratos/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Transporte de Íons
5.
Methods Mol Biol ; 2545: 459-473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36720828

RESUMO

CRISPR/Cas system has been widely used for genome editing in the past few years. Even though it has been performed in many polyploid species to date, its efficient accomplishment in these organisms is still a challenge. The presence of multiple homoeologous genes as targets for their editing requires more rigorous work and specific needs to assess successful genome editing. Here, we describe a general stepwise protocol to select target sites, design sgRNAs, indicate vector requirements, and screen CRISPR/Cas9-mediated genome editing in polyploid species.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Sistemas CRISPR-Cas/genética , Poliploidia
6.
Front Plant Sci ; 13: 1022369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299782

RESUMO

Fruit ripening is a highly regulated and complex process involving a series of physiological and biochemical changes aiming to maximize fruit organoleptic traits to attract herbivores, maximizing therefore seed dispersal. Furthermore, this process is of key importance for fruit quality and therefore consumer acceptance. In fleshy fruits, ripening involves an alteration in color, in the content of sugars, organic acids and secondary metabolites, such as volatile compounds, which influence flavor and aroma, and the remodeling of cell walls, resulting in the softening of the fruit. The mechanisms underlying these processes rely on the action of phytohormones, transcription factors and epigenetic modifications. Strawberry fruit is considered a model of non-climacteric species, as its ripening is mainly controlled by abscisic acid. Besides the role of phytohormones in the regulation of strawberry fruit ripening, a number of transcription factors have been identified as important regulators of these processes to date. In this review, we present a comprehensive overview of the current knowledge on the role of transcription factors in the regulation of strawberry fruit ripening, as well as in compiling candidate regulators that might play an important role but that have not been functionally studied to date.

7.
Plant Cell ; 33(5): 1574-1593, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33624824

RESUMO

In contrast to climacteric fruits such as tomato, the knowledge on key regulatory genes controlling the ripening of strawberry, a nonclimacteric fruit, is still limited. NAC transcription factors (TFs) mediate different developmental processes in plants. Here, we identified and characterized Ripening Inducing Factor (FaRIF), a NAC TF that is highly expressed and induced in strawberry receptacles during ripening. Functional analyses based on stable transgenic lines aimed at silencing FaRIF by RNA interference, either from a constitutive promoter or the ripe receptacle-specific EXP2 promoter, as well as overexpression lines showed that FaRIF controls critical ripening-related processes such as fruit softening and pigment and sugar accumulation. Physiological, metabolome, and transcriptome analyses of receptacles of FaRIF-silenced and overexpression lines point to FaRIF as a key regulator of strawberry fruit ripening from early developmental stages, controlling abscisic acid biosynthesis and signaling, cell-wall degradation, and modification, the phenylpropanoid pathway, volatiles production, and the balance of the aerobic/anaerobic metabolism. FaRIF is therefore a target to be modified/edited to control the quality of strawberry fruits.


Assuntos
Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Antocianinas/metabolismo , Parede Celular/metabolismo , Metabolismo Energético , Fermentação , Fragaria/genética , Regulação da Expressão Gênica de Plantas , Glicólise , Lignina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Propanóis/metabolismo , Interferência de RNA , Fatores de Transcrição/genética
8.
Plant Cell ; 32(12): 3723-3749, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33004617

RESUMO

The fruits of diploid and octoploid strawberry (Fragaria spp) show substantial natural variation in color due to distinct anthocyanin accumulation and distribution patterns. Anthocyanin biosynthesis is controlled by a clade of R2R3 MYB transcription factors, among which MYB10 is the main activator in strawberry fruit. Here, we show that mutations in MYB10 cause most of the variation in anthocyanin accumulation and distribution observed in diploid woodland strawberry (F. vesca) and octoploid cultivated strawberry (F ×ananassa). Using a mapping-by-sequencing approach, we identified a gypsy-transposon in MYB10 that truncates the protein and knocks out anthocyanin biosynthesis in a white-fruited F. vesca ecotype. Two additional loss-of-function mutations in MYB10 were identified among geographically diverse white-fruited F. vesca ecotypes. Genetic and transcriptomic analyses of octoploid Fragaria spp revealed that FaMYB10-2, one of three MYB10 homoeologs identified, regulates anthocyanin biosynthesis in developing fruit. Furthermore, independent mutations in MYB10-2 are the underlying cause of natural variation in fruit skin and flesh color in octoploid strawberry. We identified a CACTA-like transposon (FaEnSpm-2) insertion in the MYB10-2 promoter of red-fleshed accessions that was associated with enhanced expression. Our findings suggest that cis-regulatory elements in FaEnSpm-2 are responsible for enhanced MYB10-2 expression and anthocyanin biosynthesis in strawberry fruit flesh.


Assuntos
Antocianinas/metabolismo , Fragaria/genética , Variação Genética , Proteínas de Plantas/metabolismo , Alelos , Diploide , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Poliploidia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
J Exp Bot ; 70(3): 885-895, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30428077

RESUMO

The B-class of MADS-box transcription factors has been studied in many plant species, but remains functionally uncharacterized in Rosaceae. APETALA3 (AP3), a member of this class, controls petal and stamen identities in Arabidopsis. In this study, we identified two members of the AP3 lineage in cultivated strawberry, Fragaria × ananassa, namely FaAP3 and FaTM6. FaTM6, and not FaAP3, showed an expression pattern equivalent to that of AP3 in Arabidopsis. We used the CRISPR/Cas9 genome editing system for the first time in an octoploid species to characterize the function of TM6 in strawberry flower development. An analysis by high-throughput sequencing of the FaTM6 locus spanning the target sites showed highly efficient genome editing already present in the T0 generation. Phenotypic characterization of the mutant lines indicated that FaTM6 plays a key role in anther development in strawberry. Our results validate the use of the CRISPR/Cas9 system for gene functional analysis in F. × ananassa as an octoploid species, and offer new opportunities for engineering strawberry to improve traits of interest in breeding programs.


Assuntos
Flores/genética , Fragaria/genética , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Pólen/genética , Sequência de Bases , Sistemas CRISPR-Cas , Flores/crescimento & desenvolvimento , Flores/metabolismo , Fragaria/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Domínio MADS/metabolismo , Mutagênese , Filogenia , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Poliploidia , Alinhamento de Sequência
10.
Front Plant Sci ; 9: 1415, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319675

RESUMO

Over the last few years, a series of tools for genome editing have been developed, allowing the introduction of precise changes into plant genomes. These have included Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9, which is so far the most successful and commonly used approach for targeted and stable editing of DNA, due to its ease of use and low cost. CRISPR/Cas9 is now being widely used as a new plant breeding technique to improve commercially relevant crop species. Fruit ripening is a complex and genetically controlled developmental process that is essential for acquiring quality attributes of the fruit. Although the number of studies published to date using genome editing tools to molecularly understand or improve fruit ripening is scarce, in this review we discuss these achievements and how genome editing opens tremendous possibilities not only for functional studies of genes involved in fruit ripening, but also to generate non-transgenic plants with an improved fruit quality.

11.
Proc Natl Acad Sci U S A ; 113(46): E7317-E7326, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27803326

RESUMO

The ubiquity of nonparental hybrid phenotypes, such as hybrid vigor and hybrid inferiority, has interested biologists for over a century and is of considerable agricultural importance. Although examples of both phenomena have been subject to intense investigation, no general model for the molecular basis of nonadditive genetic variance has emerged, and prediction of hybrid phenotypes from parental information continues to be a challenge. Here we explore the genetics of hybrid phenotype in 435 Arabidopsis thaliana individuals derived from intercrosses of 30 parents in a half diallel mating scheme. We find that nonadditive genetic effects are a major component of genetic variation in this population and that the genetic basis of hybrid phenotype can be mapped using genome-wide association (GWA) techniques. Significant loci together can explain as much as 20% of phenotypic variation in the surveyed population and include examples that have both classical dominant and overdominant effects. One candidate region inherited dominantly in the half diallel contains the gene for the MADS-box transcription factor AGAMOUS-LIKE 50 (AGL50), which we show directly to alter flowering time in the predicted manner. Our study not only illustrates the promise of GWA approaches to dissect the genetic architecture underpinning hybrid performance but also demonstrates the contribution of classical dominance to genetic variance.


Assuntos
Arabidopsis/genética , Vigor Híbrido/genética , Cruzamentos Genéticos , Variação Genética , Hibridização Genética , Fenótipo
12.
Cell ; 159(6): 1341-51, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25467443

RESUMO

Intraspecific genetic incompatibilities prevent the assembly of specific alleles into single genotypes and influence genome- and species-wide patterns of sequence variation. A common incompatibility in plants is hybrid necrosis, characterized by autoimmune responses due to epistatic interactions between natural genetic variants. By systematically testing thousands of F1 hybrids of Arabidopsis thaliana strains, we identified a small number of incompatibility hot spots in the genome, often in regions densely populated by nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes. In several cases, these immune receptor loci interact with each other, suggestive of conflict within the immune system. A particularly dangerous locus is a highly variable cluster of NLR genes, DM2, which causes multiple independent incompatibilities with genes that encode a range of biochemical functions, including NLRs. Our findings suggest that deleterious interactions of immune receptors limit the combinations of favorable disease resistance alleles accessible to plant genomes.


Assuntos
Arabidopsis/genética , Arabidopsis/imunologia , Epistasia Genética , Sequência de Aminoácidos , Arabidopsis/classificação , Cruzamentos Genéticos , Genoma de Planta , Hibridização Genética , Dados de Sequência Molecular , Filogenia , Fenômenos Fisiológicos Vegetais , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...